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ABSTRACT                                                                                                                        Published Online: August 09, 2023 

Genomic instability defines all genetic alterations resulting from excessive or high frequency of 

mutation; base pairs sequence alterations known as microsatellite instability (MSI) and aneuploidy also 

called chromosome instability (CIN), chromosomal re- arrangements within the genome or the 

susceptibility of genome to alterations that occur during cell division cycle. The genome of most cancer 

cells is highly unstable, mostly due to damage to tumour suppressor genes example tp53 which encodes 

p53 or other genes coordinating cell division. Telomere is a nucleoprotein complex which extends the 

physical ends of eukaryotic chromosomes, protecting it from degradation, counteracting sequence loss, 

protecting genes closer to the chromosomes end and inhibiting cell cycle arrest. Studies have implicated 

the dysfunction of telomere to the formation of sub-tetraploid aneuploid cells that exhibit tumourigenic 

capacity and formation of anueploid cells that can elude programmed cell death (apoptosis) and form 

tumour cells, thus initiating genomic instability. In this review, we presented an insight to the causes 

of DNA damage and its associated genomic instability. We found that many factors such as fragile 

sites, end replication problem, DNA double strand breaks, DNA replication defects, deletion, insertion 

and translocation all are responsible to the fragile nature of the genome.                
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1.0 INTRODUCTION 

1.1 Telomeric DNA (tDNA) 

Telomeric DNA (tDNA) is a segment of DNA that occurs at 

the ends of linear eukaryotic chromosomes in eukaryotic cells 

(Chow et al., 2018). They are made up of repeated segments 

of DNA (tandem repeats) that consist of the sequence 5′-

TTAGGG-3′ [in which T, A, and G are the bases thymine, 

adenine, and guanine, respectively] (Rodrigues and Lydall  

2018a). It plays an essential role in maintaining the integrity 

and stability of the genome (Dewhurst et al., 2021 and Sixtus 

A. Okafor, et al., 2022), as they cap the end sequences of the 

chromosomes (Maciejowski et al., 2021). It is non linear and 

serves to protect the vulnerable ends of the chromosomes 

from degradation (Markiewicz-Potoczny et al., 2021), 

functions of the DNA repair system and are susceptible to 

oxidative DNA damage (Ergünm, and  Sahin  2010 and Yang 

et al., 2020). tDNA was discovered by Elizabeth Blackburn 

and colleagues In 1975–1977. They are non coding, but act 

as buffer in protecting the coding sequences further behind 

(Rodrigues, Banks and Lydall 2018), by differentiating them 

from the DNA double-strand breaks (DSBs) (Schmutz et al., 

2020) and also protecting them against homologous 

recombination (HR) and non-homologous end joining 

(NHEJ) (Guo et al., 2011 and Torrance and Lydall 2018).).
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Figure 1: Image A and B, telomere and DNA replication; image C, telomere capping the ends of chromosomes.  

(Nature Education) 

 

1.2 Genomic instability 

Genomic instability is the term used by geneticists to refer to 

a high frequency or probability of inheritable changes known 

as mutations occurring within the genome of an organism 

(Betlem et al., 2018). These changes may involve re-

arrangement of base pairs, changes in nucleic acid 

sequences, chromosomal rearrangements or aneuploidy 

(Wojcicki et al., 2018). Although, genome instability is not 

known to occur in bacteria (Giglia-Mari et al., 2011),  

however, in multicellular organisms and other higher 

ekaryotes, genome instability is known to play a central role 

in tumouringenesis and carcinogenesis (Okafor S. A, et al, 

2022) and in evolution (Takai et al, 2003 and Giglia-Mari et 

al., 2011).   

In humans it is reported to play major role in 

some neurodegenerative diseases including amyotrophic 

lateral sclerosis and the neuromuscular disease 

called myotonic dystrophy (Betlem et al., 2018 and 

Hanzlikova et al., 2020). Genome instability is known to 

occur as a result of DNA damage and its associated inaccurate 

translation synthesis past the damages site or errors in DNA 

repair, leading to mutation (Sandell and Zakian 1993 and 

Betlem et al., 2018). Another major source of genome 

instability is epigenetic or mutational reductions in 

expression of DNA repair genes, as endogenos 

(metabolically-caused) DNA damage is very frequent (Takai 

et al, 2003), occurring on average more than 60,000 times a 

day in the genomes of human cells, hence, any reduced DNA 

repair will likely induce genomic instability (Sandell and  

Zakian 1993and Hanzlikova et al., 2020). 

Many factors are known to be responsible to the fragile nature 

of the genome (Hadi et al., 2020), research have shown that 

dysfunction of telomere can lead to the formation of 

subtetraploid aneuploid cells that exhibit tumourigenic 

capacity (Sfeir and de Lange, 2012 and Roulet et al., 2020). 

The formation of anueploid cells that can elude programme 

cell death (apoptosis) and form tumour cells due to loss of 

telomere has been reported in Drosophila (Blackburn 2000). 

In most cancer cell genomes, genetic instability has been 

reported to occur in three forms: (a) intrachromosomal 

instability occasioned by deletion, insertion and 

translocation, (b) oligobase pair or point mutation due largely 

to DNA replication error and (c) anueploidy (Chow et al., 

2018 and Roulet et al., 2020). Instability and decay of the 

primary structure of the DNA has also been reported to occur 

as a result of non enzymatic methylation, hydrolysis, reactive 

oxygen species and general oxidative stress. (Lindahl, 1993 

and Platania et al., 2021).  

 

2.0 CAUSES OF DNA DAMAGE AND GENOMIC 

INSTABILITY 

DNA damage and genomic instability are known to be 

induced by: 

2.1 DNA replication defects 

During cell division,  DNA damage usually occur as a result 

of end replication problem occurring as the replisome tries to 

navigate obstacles such as tightly wound chromatin (Betlem 

et al., 2018) with bound proteins including single and double 

strand breaks which can lead to the stalling of the replication 

fork (Takai et al, 2003). Since each protein or enzyme in the 

replisome must perform its function well so as to result in a 

perfect copy of the DNA, then mutations of proteins such as 

DNA polymerase, ligase, can lead to impairment of 

replication and lead to spontaneous chromosomal exchanges 

(Rodrigues and Lydall 2018b).  Proteins such as TEL1, 

MEC1 (ATR, ATM in humans) can detect single and double-

strand breaks and recruit factors such as Rmr3 helicase to 

stabilize the replication fork in order to prevent its collapse.  
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Therefore, mutations in tel1, mec1, and rmr3 helicase is 

known to result in a significant increase in DNA damage 

occasioned by chromosomal recombination (Betlem et al., 

2018 and Rodrigues and Lydall 2018b).  

2.2 Fragile sites 

There are locations in the genome where DNA sequences are 

prone to gaps and breaks after inhibition of DNA synthesis 

such as in the checkpoint arrest (Takai et al, 2003 and Demin 

et al., 2021). These sites are called fragile sites, and can occur 

commonly and naturally. It is present in most mammalian 

genomes or occurs rarely as a result of mutations, such as 

DNA-repeat expansion (Garcia and Sanchez-Puerta 2021). 

These rare fragile sites can lead to genetic disease such as 

fragile X mental retardation syndrome (Demin et al., 2021 

and Okafor et al., 2021), myotonic dystrophy, Friedrich’s 

ataxia (Bowen and Kolodner  2017), and Huntington’s 

disease, mostly caused by expansion of repeats at the DNA, 

RNA, or protein level (Garcia and Sanchez-Puerta 2021).  

Although, seemingly harmful, these common fragile sites are 

conserved all the way in yeast and bacteria. These ubiquitous 

sites are characterized by trinucleotide repeats, most 

commonly CGG, CAG, GAA (Ayra-Plasencia et al., 2021). 

These trinucleotide repeats can form into hairpins, leading to 

difficulty of replication (Ayra-Plasencia et al., 2021 and 

Olbrich et al., 2021).  

2.3 DNA double strand breaks (DSBs)  

DSBs are a fatal distortion of the DNA architecture (Lovejoy 

et al., 2020), where the double strand helix is severed. It is 

toxic to the cell and could lead to genomic re-arrangement 

(Strucko, Lisby and Mortensen 2021). The causes of DSBs 

include; ionization agents, and radiations, inter-strand cross-

link inducing agents [ISCLs] (Wu et al., 2021) etc. When a 

DSBs is joined together at the same point by a cross-linkage, 

the damage becomes irreparable (Wu et al., 2021), as neither 

of the damaged strand could serve as a template for the repair 

of the damage (Acharya, 1971), leading to cell death or in rare 

cases, mutagenesis (Rodrigues and Lydall 2018b and 

Lovejoy et al., 2020). The mechanisms involved in the repair 

of DSBs include homologous recombination (HR) (Ambjørn 

et al., 2021), Non-homologous end joining (NHEJ) (Lovejoy 

et al., 2020; Ambjørn et al., 2021 and Wu et al., 2021) and 

Microhomology-mediated end joining (MMEJ) (Wu et al., 

2021 and Ambjørn et al., 2021).  

In MMEJ, short homologous sequences in the single stranded 

(SS) tail of the DNA are joined (Teixeira-Silva et al., 2021). 

This mediated repair is accurate, when the SS tails in the 

overhang are compactible (Strucko, Lisby and Mortensen 

2021; Wu et al., 2021 and Okafor et al., 2022). The phase of 

the cell cycle in which the cell is, prior to the DSBs, 

determines the mechanism that will be employed for the 

repair of DSBs.  In S and G2 phase of the cell division cycle, 

the HR mechanism is used to repair damage to the DNA helix, 

while at the G1 phase, NHEJ mechanism is used (Ambjørn et 

al., 2021and Okafor et al., 2022).  

During NHEJ, the DSBs are recognized by the Ku70/Ku80, 

which activates the P13 kinase. This enables the recruitment 

of Artemis nuclease and the MRN complex (MRE11, RAD50 

NBS1) (Charrier-Savournin et al., 2001), which co-ordinate 

the processing of the end of the DNA (Takeda et al., 2007; 

Charrier-Savournin et al., 2001and Charifi et al., 2021). This 

end processing is followed closely by ligation, using the 

XRCC4/Ligase iv complex (Charifi et al., 2021 and  Okafor 

et al., 2022). In HR, however, the MRN complex recognizes 

and bound to the DSBs (Charifi et al., 2021); this enables the 

MRN-CtIP complex, along with EXO1, to catalyse the end 

resection at the DSBs (Takeda et al., 2007; Charifi et al., 2021 

and Olbrich et al., 2021). 

There are differences in the way and manner various 

organisms respond to DSBs. In mammal, the 9-1-1 complex 

(RAD9, HUS1, RAD1) induce the generation of ssDNA 

(Charifi et al., 2021), while in Saccharomyces cerevisiae 

(Okafor et al., 2021), the generation of RPA coated ssDNA is 

initiated by SGS1/DNA2 and EXO1. In metazoan, though, 

the MRN- CtIP complex initiates the DSBs processing in 

analogue to the function of MRX and SAE2 (Charifi et al., 

2021), the overhangs generated are processed via two 

nucleases, depending upon the metazoan helicase BLM and 

the exonuclease 1 (Exo1). Although, metazoan, possess 

similar checkpoint signalling to Saccharomyces cerevisiae, 

they generally rely on non-homologous end-joining (NHEJ) 

for the repair of DSBs (Takeda et al., 2007; Charrier-

Savournin et al., 2001 and Charifi et al., 2021).  

2.4 The ‘end replication problem’  

During cell division cycle, the DNA is copied and the 

chromosomes duplicated (Sixtus et al., 2022). If a cell’s 

chromosome lacks telomere, the cell will loose its 

chromosomal end and genomic integrity in a phenomenon 

called “end replication problem”. This end replication 

problem occurs because the end of linear DNA cannot be 

replicated completely during replication of the lagging strand 

at DNA synthesis (Ohki et al., 2001 and Russo et al., 2021) 

leading to telomere attrition (Olovnikov, 1973 and Charifi et 

al., 2021). During DNA synthesis, the leading strand is 

synthesize completely, while the lagging strand is gradually 

truncated at the  ̴ 500-bp with the 3’ overhang left behind 

(Ohki et al., 2001and Errichiello et al., 2020). Although, the 

extent of the end replication problem during DNA synthesis 

is poorly understood, it is thought, that the telomere 

shortening in telomerase-negative cells are resulted from the 

end replication problem. The end replication problem has 

been suggested to occur as a result of the priming failure of 

the okazaki fragments at the extreme end, and/or the failure 

of the most distal RNA primer to be replaced by DNA (Ohki 

et al., 2001 and Russo et al., 2021).  

Unlike prokaryotes, eukaryotes possess linear chromosome, 

and their DNA is replicated bi-directionally. The inability to 

replicate completely the terminal region of the lagging strand 

occupied by the Okazaki fragments (Sixtus et al., 2022), 

could lead to loss of terminal sequences and genetic 

https://journalofmedical.org/index.php/ijcsmr
https://www.scopus.com/authid/detail.uri?authorId=14007831500
https://www.scopus.com/authid/detail.uri?authorId=57194561626
https://www.scopus.com/authid/detail.uri?authorId=56044698000
https://www.scopus.com/authid/detail.uri?authorId=6506678857
https://www.scopus.com/authid/detail.uri?authorId=56044698000
https://www.scopus.com/authid/detail.uri?authorId=6506678857
https://www.scopus.com/authid/detail.uri?authorId=55928434900
https://www.scopus.com/authid/detail.uri?authorId=6602134059
https://www.scopus.com/authid/detail.uri?authorId=7004033316
https://www.scopus.com/authid/detail.uri?authorId=14007831500
https://www.scopus.com/authid/detail.uri?authorId=57194561626
https://www.scopus.com/authid/detail.uri?authorId=55928434900
https://www.scopus.com/authid/detail.uri?authorId=6602134059
https://www.scopus.com/authid/detail.uri?authorId=7004033316


Sixtus, A., Okafor et al, Causes of DNA Damage and Genomic Instability: A Review  

159                                                                                                               Avaliable at: https://journalofmedical.org  

information, following each cell division, and can induce loss 

of cell viability (Ohki et al., 2001 and Sixtus et al., 2022). 

The end replication problem is also thought to explain the 

reason why somatic cells stop replicating after a number of 

cell replication (Olovnikov, 1973), observe the hayflick effect 

(Russo et al., 2021); undergo senescence and subsequently 

apoptosis (Olovnikov, 1973 and Jamieson et al., 2021). 

There are various theoretical models to the end replication 

problem. The first model suggests that the synthesis of DNA 

by polymerase from 5’ to 3’ should have not only a catalytic 

site, but also a binding site in front of the catalytic site (Russo 

et al., 2021). This site will enable the attachment of enzyme 

to the parent DNA strand, such that DNA polymerase moving 

in front of the biding site during DNA replication will 

dissociate, as it has nowhere to bind, creating the end problem 

(Olovnikov, 1973 and Jamieson et al., 2021). The second 

model, however, stressed the inability of the polymerase to 

begin new DNA synthesis itself, rather it is capable of 

elongating already existing oligonucleotide (Lie et al., 2018). 

However, recent data from the artificially created linear 

chromosome of the SV40 virus, have shown that in vitro, the 

leading strand was completely synthesised to the 5’ end 

(Jamieson et al., 2021), while the lagging strand was 

truncated at approximately 500bp region, leaving behind, the 

3’ overhang (Lie et al., 2018 and Jamieson et al., 2021), 

termed the end replication problem (Lie et al., 2018). 

The MRN protein complex (MRE11, RAD50, NBS1) has 

been implicated in the processing of the 5’ end of the parent 

strand of DNA (Lie et al., 2018 and Russo et al., 2021) 

including EXO1 (Shi Y., Hellinga and Beese 2017 and Edera 

et al., 2021) and the Apollo nucleases (Lie et al., 2018 and 

Wu et al., 2021). The Apollo nucleases is believed to play a 

leading role, as a mutation or interference in the gene coding 

the Apollo nucleases (Edera et al., 2021 and Roy et al., 2021) 

and have been shown to lead to loss of the 3’ overhang, 

induce loss of cell viability, senescence and apoptosis (Shi Y., 

Hellinga and Beese 2017 and Edera et al., 2021).  The over 

hangs constitutes the telomeric loops (t-loops), which 

protects the telomeric DNA architecture from been recognize 

as double strand breaks (DSBs) which will initiate check 

point function and DNA repairs (Edera et al., 2021 and Roy 

et al., 2021). 

The architecture and profile of the end of linear chromosomes 

such as eukaryotic chromosomes, the overhangs, mimics the 

DNA double strand breaks (DSB) (Roy et al., 2021); and 

could be recognize as DSB by the DNA repair mechanisms 

(Sandell and Zakian, 1993 and Roy et al., 2021). This 

recognition could activate checkpoint function and DNA 

repair pathways, which could degrade the end of the 

chromosomes, triggering cell arrest and genomic instability 

(Sandell and Zakian, 1993 and De Lange, 2010). They could 

also be processed by nucleases for repair either by 

homologous recombination (HR) or non-homologous end 

joining (NHEJ) (Sandell and Zakian,1993) thereby, initiating 

cell cycle arrest, with cell undergoing senescence (Roy et al., 

2021) and apoptosis (Sandell and Zakian, 1993 and Roy et 

al., 2021). This risk to the physical ends of the chromosomes 

occasioned by the difficulty of the cell to distinguish it’s 

chromosomes natural ends  from the DNA DSBs in the 

genome is known as the ‘end protection problem’ (Sandell 

and Zakian 1993 ; De Lange, T. 2010;  Lie et al., 2018 and 

Edera et al., 202).  

The ‘end protection problem’, therefore, defines the 

aggregate DNA damage signalling and repair pathways that 

require repression at telomere (Sfeir and DeLange, 2012).  

However, the structure, architecture and composition of the 

telomeres, enables them to mimic the physical ends of the 

chromosomes, there by solving the end protection problem 

(De Lange, 2010). The telomeric shelterin complex also plays 

a role, in preventing the activation of these pathways (De 

Lange, 2010 and Morafraile et al., 2019) in conjunction with 

the general DNA damage response factors (Sfeir and 

DeLange, 2012). Shelterin deficient mouse telomeres have 

revealed end replication problem, occasioned by nucleotic 

degradation in the absence of 53BP1tumour suppressor 

binding protein 1 (Sfeir and DeLange, 2012). 

2.5 Transcription-associated instability 

In both E. coli and Saccromyces pombe, transcription sites 

tend to have higher recombination and mutation rates. The 

coding or non-transcribed strand accumulates more mutations 

than the template strand (Gandini et al., 2019). This is due to 

the fact that the coding strand is single-stranded during 

transcription, which is chemically more unstable than double-

stranded DNA. During elongation of transcription, 

supercoiling can occur behind an elongating RNA 

polymerase, leading to single-stranded breaks (Timashev 

and De Lange 2020). When the coding strand is single-

stranded, it can also hybridize with itself, creating DNA 

secondary structures that can compromise replication (Garcia 

et al., 2021). In E. coli, when attempting to transcribe GAA 

triplets such as those found in Friedrich’s ataxia, the resulting 

RNA and template strand can form mismatched loops 

between different repeats (Gandini et al., 2019), leading the 

complementary segment in the coding-strand available to 

form its own loops which impede replication. 

Furthermore, replication of DNA and transcription of DNA 

are not temporally independent (Gandini et al., 2021); they 

can occur at the same time and lead to collisions between the 

replication fork and RNA polymerase complex. In S. 

cerevisiae, Rrm3 helicase is found at highly transcribed genes 

in the yeast genome, which is recruited to stabilize a stalling 

replication fork as described above. This suggests that 

transcription is an obstacle to replication (Holmes et al., 

2020), which can lead to increased stress in the chromatin 

spanning the short distance between the unwound replication 

fork and transcription start site (Garcia et al., 2019), 

potentially causing single-stranded DNA breaks. In yeast, 

proteins act as barriers at the 3’ of the transcription unit to 

prevent further travel of the DNA replication fork (Gandini et 

al., 2019 and Garcia et al., 2019). 
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CONCLUSION 

We have reviewed the various causes of genomic instability, 

which include DNA replication defects, DNA fragile site that 

encourage end joining, DNA double strand breaks, 

transcription associated instability and end replication 

problems, all these including hydrolysis, oxidative stress and 

non enzymatic methylation induce lesion on the DNA 

architecture, including decay and instability of its primary 

structure. However, we have also noted the role of telomere 

in preventing genomic instability caused by non 

environmental and epigenetic effects, by capping the physical 

ends of eukaryotic chromosomes and protecting it from 

degradation. 
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