Exploring Nephron Repair via Embryonic Stem Cells: A Review of Stem Cell-Based Kidney Therapies

Author's Information:

Vica Hilda Amelia

Faculty of medicine, Universitas Islam Indonesia, Indonesia

Muhammad Hamza Mubarak

Faculty of medicine, Universitas Islam Indonesia, Indonesia

Riyas Hasan Yazid

Faculty of medicine, Universitas Islam Indonesia, Indonesia

Ika Fidianingsih

Department of Histology, Universitas Islam Indonesia, Indonesia

Vol 05 No 10 (2025):Volume 05 Issue 10 October 2025

Page No.: 264-271

Abstract:

The nephron, the functional unit of the kidney, is responsible for filtration, reabsorption, and secretion, critical processes for maintaining systemic homeostasis. Damage to nephrons due to pathological conditions such as diabetic nephropathy, glomerulonephritis, and ischemic acute kidney injury can lead to irreversible renal dysfunction and progression to end-stage renal disease. Although current therapeutic options such as dialysis and kidney transplantation have alleviated the symptoms of renal failure, there is no curative treatment to restore native nephron function. Recent advances in regenerative medicine, particularly through the use of embryonic stem cells (ESCs), have shown promising potential in nephron repair. ESCs, due to their pluripotency, possess the ability to differentiate into various renal cell types, including podocytes, proximal tubular cells, and renal endothelial cells, all of which are vital components for nephron regeneration. Studies have demonstrated that renal progenitor cells derived from embryonic stem cells are capable of integrating into injured nephron structures, facilitating tissue repair, and contributing to the partial recovery of renal function in various experimental models. Nevertheless, significant obstacles remain, including immune compatibility, the refinement of differentiation techniques, and the assurance of long-term stability and functionality of regenerated nephron units. This review critically examines recent progress in ESC-mediated nephron regeneration, focusing on the molecular mechanisms that regulate nephron lineage commitment, advancements achieved in both experimental and translational studies, and the emerging therapeutic prospects for chronic kidney disease. The continued exploration of ESC-based therapies for nephron regeneration holds transformative potential for the future of nephrology, offering a novel approach to restoring renal function in patients with nephron loss. 

KeyWords:

Embryonic Stem Cells, Nephrons, Kidney Diseases, Regenerative Medicine, Cell Differentiation

References:

  1. Gantsova, E., Serova, O., Vishnyakova, P., Deyev, I., Elchaninov, A., & Fatkhudinov, T. (2024). Mechanisms and physiological relevance of acid-base exchange in functional units of the kidney. PeerJ, 12, e17316. 
  2. Gusev, E., Solomatina, L., Zhuravleva, Y., & Sarapultsev, A. (2021). The pathogenesis of end-stage renal disease from the standpoint of the theory of general pathological processes of inflammation. International journal of molecular sciences, 22(21), 11453. 
  3. Liu, D., Cheng, F., Pan, S., & Liu, Z. (2020). Stem cells: a potential treatment option for kidney diseases. Stem cell research & therapy, 11(1), 249. 
  4. Lebedenko, C. G., & Banerjee, I. A. (2021). Enhancing Kidney vasculature in tissue engineering—Current trends and approaches: A Review. Biomimetics, 6(2), 40. 
  5. Schwartz, G. J., & Rashid, M. (2021). Overview, structure, and function of the nephron. In Pediatric Critical Care: Text and Study Guide (pp. 863-909). Cham: Springer International Publishing. 
  6. Hoenig, M. P., & Hladik, G. A. (2018). Overview of kidney structure and function. In National Kidney Foundation's Primer on Kidney Diseases (pp. 2-18). Elsevier.
  7. Koeppen, B. M., & Stanton, B. A. (2018). Renal Physiology E-Book: Renal Physiology E-Book. Elsevier Health Sciences. 
  8. Hosseinzadeh, H. (2025). Urinary System. In Fundamentals of Medicine for Biomedical Engineering (pp. 695-742). Cham: Springer Nature Switzerland. 
  9. Valinsky, W. C. (2017). Functional characterization of transient receptor potential melastatin 7 (TRPM7) and renal epithelial anion currents. McGill University (Canada). 
  10. Romagnani, P., Remuzzi, G., Glassock, R., Levin, A., Jager, K. J., Tonelli, M., ... & Anders, H. J. (2017). Chronic kidney disease. Nature reviews Disease primers, 3(1), 1-24. 
  11. Krolewski, A. S., Skupien, J., Rossing, P., & Warram, J. H. (2017). Fast renal decline to end-stage renal disease: an unrecognized feature of nephropathy in diabetes. Kidney international, 91(6), 1300-1311. 
  12. Romagnani, P., Remuzzi, G., Glassock, R., Levin, A., Jager, K. J., Tonelli, M., ... & Anders, H. J. (2017). Chronic kidney disease. Nature reviews Disease primers, 3(1), 1-24. 
  13. Kellum, J. A., Romagnani, P., Ashuntantang, G., Ronco, C., Zarbock, A., & Anders, H. J. (2021). Acute kidney injury. Nature reviews Disease primers, 7(1), 52. 
  14. Schmitt, R., & Melk, A. (2017). Molecular mechanisms of renal aging. Kidney international, 92(3), 569-579. 
  15. Kim, H., Jang, H., Kim, T. W., Kang, B. H., Lee, S. E., Jeon, Y. K., ... & Youn, H. D. (2015). Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency. Stem cells, 33(9), 2699-2711. 
  16. Bussolati, B., & Camussi, G. (2015). Therapeutic use of human renal progenitor cells for kidney regeneration. Nature Reviews Nephrology, 11(12), 695-706. 
  17. Nishinakamura, R., Sharmin, S., & Taguchi, A. (2017). Induction of nephron progenitors and glomeruli from human pluripotent stem cells. Pediatric Nephrology, 32(2), 195-200. 
  18. Mari, C., & Winyard, P. (2015). Concise review: understanding the renal progenitor cell niche in vivo to recapitulate nephrogenesis in vitro. Stem cells translational medicine, 4(12), 1463-1471. 
  19. Tamargo, C., Hanouneh, M., & Cervantes, C. E. (2024). Treatment of acute kidney injury: a review of current approaches and emerging innovations. Journal of Clinical Medicine, 13(9), 2455. 
  20. Takasato, M., Er, P. X., Becroft, M., Vanslambrouck, J. M., Stanley, E. G., Elefanty, A. G., & Little, M. H. (2014). Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nature cell biology, 16(1), 118-126. 
  21. Wang, Y., Zhou, C. J., & Liu, Y. (2018). Wnt signaling in kidney development and disease. Progress in molecular biology and translational science, 153, 181-207.
  22. Mukherjee, M., Fogarty, E., Janga, M., & Surendran, K. (2019). Notch signaling in kidney development, maintenance, and disease. Biomolecules, 9(11), 692. 
  23. Trueb, B., Amann, R., & Gerber, S. D. (2013). Role of FGFRL1 and other FGF signaling proteins in early kidney development. Cellular and molecular life sciences, 70(14), 2505-2518. 
  24. Taguchi, A., & Nishinakamura, R. (2015). Nephron reconstitution from pluripotent stem cells. Kidney international, 87(5), 894-900. 
  25. Sallam, M. (2021). Using embryonic stem cell-derived ureteric buds for ureter engineering and developing methods to connect them to host kidneys in culture. 
  26. Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-β-induced epithelial to mesenchymal transition. Cell research, 19(2), 156-172. 
  27. Davidson, A. J., Lewis, P., Przepiorski, A., & Sander, V. (2019, July). Turning mesoderm into kidney. In Seminars in cell & developmental biology (Vol. 91, pp. 86-93). Academic Press. 
  28. Nishinakamura, R., Sharmin, S., & Taguchi, A. (2017). Induction of nephron progenitors and glomeruli from human pluripotent stem cells. Pediatric Nephrology, 32(2), 195-200. 
  29. Perl, A. J., Schuh, M. P., & Kopan, R. (2022). Regulation of nephron progenitor cell lifespan and nephron endowment. Nature Reviews Nephrology, 18(11), 683-695. 
  30. Lv, J., Yu, H., Du, S., Xu, P., Zhao, Y., Qi, W., & Wang, X. (2025). Targeting endoplasmic reticulum stress: an innovative therapeutic strategy for podocyte-related kidney diseases. Journal of Translational Medicine, 23(1), 95.
  31. Nishinakamura, R., Sharmin, S., & Taguchi, A. (2017). Induction of nephron progenitors and glomeruli from human pluripotent stem cells. Pediatric Nephrology, 32(2), 195-200.